OGUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

I &II – Semester Course Title: **Physics** (Course Code: 4300005)

Diploma programme in which this course is offered	Semester in which offered	
Biomedical Engineering, Electronics and Communication	First	
Engineering, Instrumentation & Control, Printing Technology	11131	
Computer Engineering, Electrical Engineering, Information	Second	
Technology, Power Electronics	360010	

1. RATIONALE

Physics is branch of science mainly deals with interaction of energy and matter and considered as the mother of all engineering disciplines. Diploma engineers (technologists) have to deal with various materials while using/ maintaining machines. More over the basic knowledge of principles of physics helps diploma students to lay foundations of core engineering courses. The laws and principles of physics, formulae and knowledge of physical phenomena and physical properties provides a means of estimating the behavior of things before we design and observe them. This course of physics has been designed as per program requirements to help students to study the relevant core engineering courses. The complicated derivations have been avoided and micro projects are introduced. This course will help the diploma engineers to use/apply the basic concepts and principles of physics solve well designed engineering problems and comprehend different technology-based applications.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use principles of physics to solve broadly defined engineering problems.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Use relevant instruments with precision to measure the dimension of given physical quantities in various engineering situations.
- b) Apply the concepts of electrostatics and capacitance for engineering applications.
- Apply the basic concepts of heat transfer and thermometric properties to provide solutions for various engineering problems.
- d) Use the concept of waves and sound waves for various engineering applications involving wave dynamics.
- e) Use the concepts of LASER and Fiber optics for various engineering applications.

Teachi	ing Sch	neme	Total Credits	Examination Scheme				
(In	Hours	5)	(L+T+P/2)	Theory	y Marks	Practica	Marks	Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks
3	-	2	4	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) that are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO. These PrOs need to be attained at least at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Lies Version coliners to measure the dimensions of a siver object		02*
1	Use Vernier calipers to measure the dimensions of a given object.		02*
2	Use micrometer screw gauge to measure diameter of a given wire and determine volume of a given metallic piece.	I	02
3	Use a parallel plate capacitor to investigate the dependence of capacitance of a parallel plate capacitor on various factors.	II	02*
4	Use principles of series and parallel combinations of capacitance in solving various electrical circuits.	II	02
5	Use different types of thermometers to measure temperature of a hot bath and convert it into different scales.		02*
6	Use Searle's method to measure the coefficient of thermal conductivity of a given metallic rod.		02
7	Use Searle's method to determine the coefficient of linear expansion of the given metallic rod.		02
8	Use sonometer to find the frequency of given tuning fork.	IV	02*
9	Use resonance tube to determine velocity of sound in air at room temperature.	IV	02
10	Determine the refractive index of given semi-circular glass block using TIR.	V	02*
11	Determine refractive index of liquid by concave mirror.	V	02
12	Determine the value of the numerical aperture (NA) of given optical fibre.	V	02

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
13	Use ultrasonic interferometer to determine the velocity of ultrasonic waves in different liquids.	V	02
14	Use electrical vibrator to find the frequency of AC mains.	V	02
	Total		28

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some* **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare of experimental setup	20
2	Operate the equipment setup or circuit	20
3	Follow safe practices measures	10
4	Record observations correctly	20
5	Interpret the result and conclude	30
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS AND SOFTWARE REQUIRED

These major equipment/instruments and Software required to develop PrOs are given below with broad specifications to facilitate procurement of them by the administrators/management of the institutes. This will ensure conduction of practical in all institutions across the state in proper way so that the desired skills are developed in students.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Vernier caliper analog - least count- 0.02 mm	1
2	Micrometer screw gauge analog (0-25 mm) – least count 0.01mm	2
3	Parallel plate capacitor (variable plate distance and area)	3
4	Digital capacitance meter	3, 4
5	Hot water bath	5
6	Mercury filled glass thermometer 0-110 °C, Mercury filled glass thermometer 0-250 °C., digital food thermometer, bimetallic thermometer.	5

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
7	Clamp with stand.	5
8	Searle's thermal conductivity apparatus - made up of pure copper and outer boxes are of wooden polished material, 04 thermometers, steam boiler, measuring cylinder, constant water level tank, pinch cork, stop watch (1/100 s), rubber tube.	6
9	Linear expansion apparatus, steam generator, rubber tubing, metal rods of aluminum, iron, copper, brass, and steel.	7
10	A Sonometer with a tuning fork set and two sharp edge wedges and a weight box.	8
11	Resonance tube apparatus, tuning forks of different frequencies, rubber pad, thermometer	9
12	Semi-circular glass block	
13	Laser light pen	10
14	A concave mirror, stand, pointer	11
15	Complete set up to determine numerical aperture (NA) of optical fiber with LASER source.	12
16	Hot plate (1800 W)	6, 7
17	Ultrasonic interferometer - gold plated quartz crystal, operating voltage - 220 Volt, display - analog, frequency - 2MHz with position control	13
18	Electrical Vibrator, uniform cord, weight pan, weight box, pulley, meter scale, sensitive balance	14

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Follow safe practices
- d) Handle equipment carefully
- e) Practice energy saving processes.
- f) Practice environmentally friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit – I:	1.a Explain physical quantities	1.1 Measurement and units in
	and their units.	engineering and science
Units and	1.b Convert unit of a given	1.2 Physical quantities; fundamental
Measurements	physical quantity in one	and derived quantities,
	system of units into another	1.3 Systems of units: CGS, MKS and SI,
	systems of units.	definition of units (only for
	1.c Explain methods to measure	information and not to be asked in
	the dimensions of given	examination), Interconversion of
	object by using relevant	units MKS to CGS and vice versa,
	instruments.	requirements of standard unit,
	1.d Estimate errors in the	1.4 Vernier caliper, Micrometer screw
	measurement.	gauge
	1.e Apply the concept of least	1.5 Accuracy, precision and error,
	count, errors and significant	estimation of errors - absolute
	figures to solve the given	error, relative error and percentage
	problems.	error, error propagation, significant
		figures
Unit – II:	2.a Explain Coulomb's inverse	2.1 Charge, unit of charge, Coulomb's
	square law and apply it on	law
Electrostatics	system of charges.	2.2 Electric field, electric field lines and
	2.b Explain an electric field,	its properties
	electric flux, electric	2.3 Electric flux, electric potential and
	potential and potential	potential difference (point charge
	difference.	only)
	2.c Explain the concepts of a	2.4 Capacitor and its capacitance.
	capacitor, capacitance and working of parallel plate	(C = Q/V), Working of the parallel
	capacitor.	capacitor, formula $\left(C = \varepsilon_0 \frac{A}{d}\right)$,
	2.d Apply the concept of series	types of capacitors: Plane, spherical
	and parallel combination of	& cylindrical (Information only)
	capacitors to solve problems	2.5 Equivalent capacitance of
	in electrical circuits.	capacitors in series and in parallel
		combinations.
		2.6 Effect of dielectric material on the
		capacitance of parallel plate
		capacitor. (No Derivation)
Unit – III:	3.a Distinguish between Heat	3.1 Heat and Temperature
11	and Temperature.	3.2 Modes of Heat transfer:
Heat and	3.b Explain modes of heat	Conduction, Convection and

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit	(4 to 6 UOs at different levels)	
Thermometry	transmission.	Radiation
mermometry	3.c Explain various temperature	
	scales and conversion	3.3 Temperature measurement scales:
		Kelvin, Celsius and Fahrenheit and
	between them.	interconversion between them
	3.d Explain Heat Capacity and	3.4 Heat Capacity and Specific Heat
	Specific Heat.	3.5 Types of thermometers (Mercury
	3.e Explain types of	thermometer, Bimetallic
	thermometers and their	thermometer, Platinum resistance
	uses.	thermometer, Pyrometer) and their
	3.f Apply the concept of co-	uses
	efficient of thermal	3.6 Coefficient of thermal conductivity
	conductivity to solve	and its engineering applications
	engineering problems.	3.7 Expansion of solids, coefficient of
	3.g Explain expansion in solids	linear expansion
	and coefficient of linear	
	expansions in solids.	
Unit – IV:	4.a Explain wave and wave	4.1 Waves, wave motion, and types of
	motion with example.	waves: longitudinal and transverse
Wave motion	4.b Distinguish between	waves
and its	longitudinal and transverse	4.2 Frequency, periodic time,
applications	waves.	amplitude, wave length and wave
	4.c Explain frequency, periodic	velocity and their relationship
	time, amplitude, wave length	4.3 Properties of sound and light waves
	and wave velocity.	4.4 phase, phase difference and various
	4.d Explain sound waves, light	terms of wave equation $(y =$
	waves and their properties	$Asin(\omega t + \varphi))$ [NO equations of
	4.e Explain amplitude, phase,	velocity and acceleration]
	phase difference and wave	4.5 Superposition of waves,
	equation.	Interference: constructive and
	4.f Explain principle of	destructive interference , condition
	superposition of waves,	for stationary interference pattern,
	interference and beat	beat formation
	formation.	4.6 Ultrasonic waves, production of
	4.g Explain ultrasonic waves,	ultrasonic waves – magnetostriction
	production and their	and piezoelectric method, their
	properties.	properties, applications of
	4.h Explain engineering and	ultrasonic waves in the field of
	medical applications of	engineering and medical
	ultrasonic waves.	
Unit – V:	5.a Apply Snell's law to calculate	5.1 Refraction, refractive index and
	refractive index of given	Snell's law
Optics and	medium	5.2 Total internal reflection, critical
Modern	5.b Explain the phenomenon of	angle and necessary conditions for
Physics	total internal reflection	total internal reflection
	5.c Explain LASER and it's in	5.3 Application of total internal

Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
	 engineering and medical applications. 5.d Explain construction and working principle of step index and graded index optical fibers. 5.e Comprehend engineering and medical applications of optical fiber. 	reflection in optical fire 5.4 LASER, characteristics of LASER, differences between LASER and ordinary light 5.5 Applications of LASER in engineering and medical field. 5.6 Optical fiber and light propagation through optical fiber, acceptance angle and numerical aperture 5.7 Step index and graded index 5.8 Applications of optical fiber in engineering and medical. 5.9 Advantages of optical fiber over coaxial cable.

Note: The UOs need to be formulated at the 'Applcation Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

- 'Definition of units' is only for information and not to be asked in examination.
- Students can be introduced to system of units other than SI, MKS, CGS unit systems.
- Application level based numerical should be given at the time of instruction and assessment in each unit.
- Only scalar treatment is to be given to Coulomb's law (No Vector Treatment)
- Concept of electric potential and potential difference is constrained to Point charge only.
- Types of capacitors: parallel plate, spherical & cylindrical are for information point of view only.
- Types of Optical Fiber: Step index and Graded index (Only Single mode)

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Units and Measurements	8	4	4	5	13
П	Electrostatics	8	4	4	5	13
Ш	Heat and Thermometry	8	2	5	6	13
IV	Wave motion and its applications	9	4	6	5	15
V	Optics and Modern Physics	9	4	7	5	16
	Total	42	18	26	26	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare small reports of about 5 pages for each activity. They should also collect/record physical evidences such as photographs/videos of the activities for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare model to demonstrate concepts of physics
- b) Undertake micro-projects in teams
- c) Give seminar on any relevant topic.
- d) Measure physical quantities using smart phone.
- e) Prepare showcase portfolios.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability using the knowledge of this course

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the microproject should be about **14-16** (*fourteen to sixteen*) *student engagement hours* during the course.The students ought to submit micro-project by the end of the semester (so that they develop the industryoriented COs). A suggestive list of micro-projects is given here. This should relate highly with competency of the course and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Measurement: Measure physical quantities using smart phone applications.
- b) Prepare proto type Vernier calipers of given least count.
- c) Arduino: Physical quantities such as Voltage, Magnetic field, Temperature, Light, Sound and distance can be measured with the help of low-cost sensors and Arduino.
- d) Paper Capacitor: Aluminum foil and tissue paper can be used to make cylindrical capacitor.
- e) Variable capacitor: Two copper cylinders and plastic pipe can be used to make variable capacitor.
- f) Sugar and bending of light: prepare a solution of sugar and water to demonstrate bending of light (using semiconductor LASER).
- g) Fiber optics: prepare an optical fiber cable using transparent flexible plastic tube, laser and water to demonstrate the property of optical fiber cable.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	SEARS and ZEMANSKY'S University Physics with modern Physics	Hugh D. Young & Roger A. Freedman	Person Publication 14th Edition, USA, ISBN 10: 0-321-97361-5; ISBN 13: 978-0-321-97361-0 (Student edition)
2	Physics for Scientists and Engineers with Modern Physics	John W. Jewett & Raymond A. Serway	CENGAGE Learning, 2010, Boston, 10 th edition, ISBN-10: 1337553298
3	University Physics (Volume I, II & III) (Open- source Material)	William Moebs, Samuel J. Ling & Jeff Sanny	OPENSTAX, 2016, Houston, Texas ISBN-13: 1-947172-20-4
4	PHYSICS for SCIENTISTS & ENGINEERS with Modern Physics	Douglas C. Giancoli	Pearson, 2015, 7 th edition, Delhi, ISBN-13: 978-1292057125
5	Principles of Physics	Jearl Ealker, David Halliday, Robert Resnick	Wiley India, 2015, Navi Mumbai 10 th edition, ISBN-13: 978-8126552566
6	Physics in Daily Life With illustrations	L.J.F. Hermans & Wiebke Drenckhan	EDP Sciences, 2012, France ISBN: 978-2-7598-0705-5
7	Introductory Physics: Building Models to Describe Our World (Open-Source Material)	Ryan Martin, Emma Neary, Joshua Rinaldo & Olivia Woodman	Creative Commons license, 2019, GitHub
8	Concept of Physics (volume I & II)	H.C. Verma	Bharati Bhavan Publishers, 2017, 1 st edition, New Delhi, ISSBN-13: 978- 8177091878

S. No.	Title of Book	Author	Publication with place, year and ISBN		
9	Introduction to Fiber	Ajoy Ghatak & K.	Cambridge University Press India		
	optics	Thyagarajan	Pvt. Ltd., New Delhi, ISBN:		
			9780521577854		

14. SUGGESTED LEARNING WEBSITES

- a) www.williamson-labs.com
- b) www.cadsoft.io
- c) www.nptel.iitm.ac.in
- d) www.khanacademy
- e) www.olabs.edu.in
- f) www.vlab.co.in
- g) www.vlabs.iitb.ac.in
- h) www.vlab.amrita.edu
- i) www.praxilabs.com
- j) www.compadre.org/osp/
- k) www.datasheetcafe.com

15. PO-COMPETENCY-CO MAPPING

Semester I/II	Physics (Course Code: 4300005)						
	POs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning
<u>Competency</u> Use Principles of Physics to solve broadly defined engineering problems.	3	1	1	2	1	-	1
<u>Course Outcomes</u> CO a)Use relevant instruments with precision to measure the dimension of given physical quantities in various engineering situations.	3	1	1	2	-	-	1
CO b) Apply the concepts of electrostatics and capacitance for engineering applications	3	1	1	2	-	-	1
CO c) Apply the basic concepts of heat transfer and thermometric properties to provide solutions for various engineering problems.	3	1	1	2	1	-	1
CO d) Use the concept of waves and sound waves for various engineering applications involving wave -dynamics.	3	1	1	2	1	-	1
CO e)Use the concepts of LASER and Fiber optics for various engineering applications.	3	-	1	2	1	-	1

Legend: '3' for high, '2' for medium, '1' for low or '-' for no correlation with CO and PO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Shri Dineshkumar V. Mehta Lecturer in Physics	Government Polytechnic, Gandhinagar	9879690825	<u>dv_mehta@yahoo.com</u>
2	Lt (Dr.) Duhita B. Lakhatariya Lecturer in Physics	Government Polytechnic, Ahmedabad	9725201631	duhita.167@gmail.com
3	Shri Jignesh B. Chauhan Lecturer in Physics	Government Polytechnic, Kheda	9428486344	jbclph@gmail.com
4	Shri Aditya Kumar B. Patel Lecturer in Physics	K.D. Polytechnic, Patan	9979534522	graquantum@gmail.com
5	Late Dr. Gaurang S. Patel Lecturer in Physics	Dr. S. & S. S. Ghandhy College of Engineering & Technology, Surat	9909986859	goru16686@gmail.com

NITTTR Resource Person

S. No.	Name and Designation	Department	Contact No.	Email
1	Dr Hussain Jeevakhan Assistant Professor	Department of Applied science and education	0755-261600*360	hjeevakhan@nitttrbpl.ac.in