

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3140707 Semester – IV Subject Name: Computer Organization & Architecture

Type of course: core course

Prerequisite: None

Rationale:

Teaching and Examination Scheme:

Tea	aching Sch	neme	Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical N	Marks	Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Syllabus:

Sr.	Content	Total Hrs		
No.				
1	Computer Data Representation	4		
	Basic computer data types, Complements, Fixed point representation,			
	Register Transfer and Micro-operations:			
	Floating point representation, Register Transfer language, Register Transfer, Bus and			
	Memory Transfers (Tree-State Bus Buffers, Memory Transfer), Arithmetic Micro-			
_	Operations, Logic Micro-Operations, Shift Micro-Operations, Arithmetic logical shift unit			
2	Basic Computer Organization and Design	4		
	Instruction codes, Computer registers, computer instructions, Timing and Control,			
	Instruction cycle, Memory-Reference Instructions, Input-output and interrupt, Complete			
	computer description, Design of Basic computer, Design of Accumulator Unit.			
3	Assembly Language Programming	8		
	Introduction, Machine Language, Assembly Language Programming: Arithmetic and			
	logic operations, looping constructs, Subroutines, I-O Programming.			
4	Micro programmed Control Organization:	4		
	Control Memory, Address sequencing, Micro program example, Design of Control Unit			
5	Central Processing Unit	5		
	Introduction, General Register Organization, Stack Organization, Instruction format, Addressing Modes, Date transfer and manipulation, Program control, Bedward Instruction			
	Addressing Modes, Data transfer and manipulation, Program control, Reduced Instruction			
	Set Computer (RISC) & Complex Instruction Set Computer (CISC)			
6	Pipeline And Vector Processing	5		
	Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction, Pipeline RISC Pipeline, Vector Processing, Array Processors			
_	Pipeline, RISC Pipeline, Vector Processing, Array Processors			
7	Computer Arithmetic	4		
	Introduction, Addition and subtraction, Multiplication Algorithms (Booth Multiplication			
	Algorithm), Division Algorithms, Floating Point Arithmetic operations, Decimal			
0	Arithmetic Unit.	4		
8	Input-Output Organization	4		
	Input-Output Interface, Asynchronous Data Transfer, Modes Of Transfer, Priority			
	interrupi, DWA, input-Output Processor (IOP), CPUIOP Communication, Serial			
0	Communication.	6		
9	Memory Urganization	0		
	Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache			
	Memory, virtual Memory.			

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Codes 2140707

Subject Code: 3140707

10	Multiprocessors	4		
	Characteristics of Multiprocessors, Interconnection Structures, Inter-processor			
	Arbitration, Inter-processor Communication and Synchronization, Cache Coherence,			
	Shared Memory Multiprocessors.			

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
20	30	15	15	15	5	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1. M. Morris Mano, "Computer System Architecture", Pearson Education
- 2. Yale N. Patt, Sanjay J. Patel, "Introduction to Computing Systems" McGraw Hill.
- 3. Hamacher, Vranesic, Zaky, "Computer Organization", McGraw Hill.
- 4. Andrew S. Tanenbaum and Todd Austin, "Structured Computer Organization", Pearson Education
- 5. N. D. Jotwani, "Computer system organization", McGraw Hill
- 6. R.S.Gaonkar, "Microprocessor Architecture, Programming and Applications with 8085A", Penram International
- 7. Douglas Hall, Microprocessors and Interfacing, TMH.

Course Outcomes:

Sr. No.	CO statement	Marks % weightage
CO-1	Identify and explain the basic structure and functional units of a digital computer.	10
CO-2	Write assembly language programs and identify the role and working of various functional units of a computer for executing an instructions.	30
CO-3	Design processing unit using the concepts of ALU and control logic design.	25
CO-4	Design circuits for interfacing memory and I/O with processor.	25
CO-5	Comprehend the features and performance parameters of different types of computer architectures.	10

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3140707

List of Practical:

Sr.	Practical Title	CO
No.		
1	Implement Booth's Algorithm	CO-1
2	Write the working of 8085 simulator GNUsim8085 and basic architecture of 8085	CO-
	along with small introduction.	2,
		CO-6
3	Write an assembly language code in GNUsim8085 to store numbers in reverse order	CO-5
	in memory location.	
4	Write an assembly language code in GNUsim8085 to implement arithmetic	CO-2
	instruction	
5	Write an assembly language code in GNUsim8085 to find the factorial of a number.	CO-5
6	Write an assembly language code in GNUsim8085 to implement logical	CO-2
	instructions.	
7	Design ALU using Logisim.	CO-6
8	Implement 16-bit single-cycle MIPS processor in Verilog HDL	CO-6